B.A/B.Sc 3 ${ }^{\text {rd }}$ Semester (Honours) Examination, 2020 (CBCS)
 Subject: Mathematics
 Course: BMH3CC05 (Theory of Real Functions \& Introduction to Metric Spaces)

Time: 3 Hours
Full Marks: 60

The figures in the margin indicate full marks.
Candidates are required to write their answers in their own words as far as practicable.
[Notation and Symbols have their usual meaning]

1. Answer any six questions:

(a) $\quad \mathrm{A}$ function f is defined on $[0,1]$ by $f(0)=1$ and $f(x)=\left\{\begin{array}{l}0, \text { if } x \text { is irrational } \\ \frac{1}{n}, \text { if } x=\frac{m}{n} \text { where } m, n \text { are positive integers prime to each other. }\end{array}\right.$
Prove that f is continuous at every irrational point in $[0,1]$ and discontinuous at every rational point in $[0,1]$.
(b) \quad function $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous on \mathbb{R}, and
$f(x+y)=f(x)+f(y), \forall x, y \in \mathbb{R}$.
Prove that f is a linear function.
(c) State and prove Darboux's theorem on derivative.
(d) Use Taylor's Theorem to prove that $1-\frac{1}{2} x^{2} \leq \cos x$ for $-\pi<x<\pi$.
(e) Find the radius of curvature of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ at an end of the major axis.
(f) Let X be a nonempty set and d_{1}, d_{2} be two metrics on X. Prove that
$d: X \times X \rightarrow \mathbb{R}$, defined by $d(x, y)=\sqrt{\left(d_{1}(x, y)\right)^{2}+\left(d_{2}(x, y)\right)^{2}}$, is a metric on X.
(g) Prove that every closed ball in a metric space is a closed set in that metric space.
(h) Prove that the metric space $l^{p}, 1 \leq p<\infty$ is separable.
2. Answer any three questions:

$$
\begin{equation*}
3 \times 10=30 \tag{3}
\end{equation*}
$$

(a) (i) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by $f(x)=\left\{\begin{array}{l}x, \text { if } x \text { is rational } \\ 0, \text { if } x \text { is irrational. }\end{array}\right.$

Prove that $\lim _{x \rightarrow a} f(x)$ exists only if $a=0$.
(ii) Show that $\lim _{x \rightarrow 0-} e^{\frac{1}{x}}=0$.
(iii) Prove that every real valued continuous function defined on a closed and bounded interval $[a, b]$ is bounded.
(b) (i) If ρ_{1}, ρ_{2} are the radii of curvature at the extremities of any chord of the cardioid $r=a(1+\cos \theta)$, which passes through the pole, then prove that $\rho_{1}{ }^{2}+\rho_{2}{ }^{2}=\frac{16}{9} a^{2}$.
(ii) Find the equation of the evolute of the astroid $x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}$.
(c) (i) Prove that a nonempty subset G in a metric space is open if and only if it is a union of open balls.
(ii) Let (X, d) be a metric space and $A \subset X$. Prove that \bar{A}, the closure of A, is the intersection of all closed sets in (X, d) each containing A.
(iii) Let \mathbb{C} be the set of all complex numbers. Define $d: \mathbb{C} \times \mathbb{C} \rightarrow \mathbb{R}$ by

$$
d\left(z_{1}, z_{2}\right)=\left\{\begin{aligned}
0, & \text { if } z_{1}=z_{2} \\
\left|z_{1}\right|+\left|z_{2}\right|, & \text { if } z_{1} \neq z_{2}
\end{aligned}\right.
$$

Prove that d is a metric on \mathbb{C}.
(d) (i) State Cauchy's MVT and give its geometrical significance.
(ii) A twice differentiable real valued function f defined on the closed and bounded interval $[a, b]$ is such that $f(a)=f(b)=0$ and $f\left(x_{0}\right)<0$ where $a<x_{0}<b$. Prove that there exists at least one point $c \in(a, b)$ for which $f^{\prime \prime}(c)>0$.
(iii)

$$
\text { If } x \in[0,1] \text { prove that }\left|\log (1+x)-\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{3}\right)\right|<\frac{1}{4}
$$

(e) (i) If f is a real valued continuous function defined on a closed and bounded interval $[a, b]$, prove that f is uniformly continuous on $[a, b]$.
(ii) Show that $f(x)=x^{2}$ is uniformly continuous in $(0,1)$
(iii) Define a Lipschitz function. If $I \subset \mathbb{R}$ is an interval and $f: I \rightarrow \mathbb{R}$ is a Lipschitz function, then prove that f is uniformly continuous on I.

