B.A/B.Sc 3rd Semester (Honours) Examination, 2020 (CBCS) Subject: Mathematics Course: BMH3CC05 (Theory of Real Functions & Introduction to Metric Spaces)

Time: 3 Hours

Full Marks: 60

The figures in the margin indicate full marks. Candidates are required to write their answers in their own words as far as practicable. [Notation and Symbols have their usual meaning]

1.	Answ	er any six questions:	6×5 = 30	
(a)		A function f is defined on [0,1] by		[5]
		f(0) = 1 and		
		0, if x is irrational		
		$f(x) = \begin{cases} 0, \text{ if } x \text{ is irrational} \\ \frac{1}{n}, \text{ if } x = \frac{m}{n} \text{ where } m, n \text{ are positive integers prime to each oth} \end{cases}$	er.	
		Prove that f is continuous at every irrational point in [0,1] and discont	tinuous at	
		every rational point in [0,1].		
(b)		A function $f: \mathbb{R} \to \mathbb{R}$ is continuous on \mathbb{R} , and		[5]
		$f(x+y) = f(x) + f(y), \forall x, y \in \mathbb{R}.$		
		Prove that f is a linear function.		
(c)		State and prove Darboux's theorem on derivative.		[1+4]
(d)		Use Taylor's Theorem to prove that $1 - \frac{1}{2}x^2 \le \cos x$ for $-\pi < x < \infty$	(π.	[5]
(e)		Find the radius of curvature of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at an end of axis	the major	[5]
(f)		axis.		[5]
(f)		Let X be a nonempty set and d_1, d_2 be two metrics on X. Prove that		[5]
		$d: X \times X \rightarrow \mathbb{R}$, defined by $d(x, y) = \sqrt{(d_1(x, y))^2 + (d_2(x, y))^2}$, is a	metric on	
		Х.		
(g)		Prove that every closed ball in a metric space is a closed set in the space.	nat metric	[5]
(h)		Prove that the metric space l^p , $1 \le p < \infty$ is separable.		[5]
2. Answer any three questions: $3 \times 10 = 30$				
2 .		wer any three questions:	$3 \times 10 = 30$	
(a)	(i)	Let $f: \mathbb{R} \to \mathbb{R}$ be a function defined by $f(x) = \begin{cases} x, if x \text{ is rational} \\ 0, if x \text{ is irrational.} \end{cases}$		[3]
		Prove that $\lim_{x\to a} f(x)$ exists only if $a = 0$.		
	(ii)	Show that $\lim_{x\to 0^-} e^{\frac{1}{x}} = 0.$		[2]

- (iii) Prove that every real valued continuous function defined on a closed and [5] bounded interval [a,b] is bounded.
- (b) (i) If ρ_1, ρ_2 are the radii of curvature at the extremities of any chord of the [5] cardioid $r = a(1 + \cos\theta)$, which passes through the pole, then prove that

$$\rho_1^2 + \rho_2^2 = \frac{16}{9}a^2.$$

- (ii) Find the equation of the evolute of the astroid $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$. [5]
- (c) (i) Prove that a nonempty subset *G* in a metric space is open if and only if it is a [3] union of open balls.
 - (ii) Let (X,d) be a metric space and $A \subset X$. Prove that \overline{A} , the closure of A, is the [3] intersection of all closed sets in (X,d) each containing A.
 - (iii) Let \mathbb{C} be the set of all complex numbers. Define $d: \mathbb{C} \times \mathbb{C} \to \mathbb{R}$ by [4] $d(z_1, z_2) = \begin{cases} 0, & \text{if } z_1 = z_2 \\ |z_1| + |z_2|, & \text{if } z_1 \neq z_2. \end{cases}$

Prove that d is a metric on \mathbb{C} .

- (d) (i) State Cauchy's MVT and give its geometrical significance. [1+2]
 - (ii) A twice differentiable real valued function f defined on the closed and [3] bounded interval [a,b] is such that f(a) = f(b) = 0 and f(x₀) < 0 where a < x₀ < b. Prove that there exists at least one point c ∈ (a,b) for which f"(c) > 0.

(iii) If
$$x \in [0,1]$$
 prove that $\left| \log(1+x) - \left(x - \frac{x^2}{2} + \frac{x^3}{3} \right) \right| < \frac{1}{4}$. [4]

- (e) (i) If f is a real valued continuous function defined on a closed and bounded [5] interval [a,b], prove that f is uniformly continuous on [a,b].
 - (ii) Show that $f(x) = x^2$ is uniformly continuous in (0,1) [2]
 - (iii) Define a Lipschitz function. If $I \subset \mathbb{R}$ is an interval and $f: I \to \mathbb{R}$ is a [3] Lipschitz function, then prove that f is uniformly continuous on I.